Singularity enrichment for complete sliding contact using the partition of unity finite element method

نویسندگان

  • E. Giner
  • N. Sukumar
  • F. J. Fuenmayor
  • A. Vercher
چکیده

In this paper, the numerical modelling of complete sliding contact and its associated singularity is carried out using the partition of unity finite element method. Sliding interfaces in engineering components lead to crack nucleation and growth in the vicinity of the contact zone. To accurately capture the singular stress field at the contact corner, we use the partition of unity framework to enrich the standard displacement-based finite element approximation by additional (enriched) functions. These enriched functions are derived from the analytical expression of the asymptotic displacement field in the vicinity of the contact corner. In order to characterize the intensity of the singularity, a domain integral formulation is adopted to compute the generalized stress intensity factor. Numerical results on benchmark problems are presented to demonstrate the improved accuracy and benefits of this technique. We conduct an investigation on issues pertaining to the extent of enrichment, accurate numerical integration of weak form integrals, and the rate of convergence in energy. The use of partition of unity enrichment leads to

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Partition of unity enrichment for bimaterial interface cracks

Partition of unity enrichment techniques are developed for bimaterial interface cracks. A discontinuous function and the two-dimensional near-tip asymptotic displacement functions are added to the finite element approximation using the framework of partition of unity. This enables the domain to be modelled by finite elements without explicitly meshing the crack surfaces. The crack-tip enrichmen...

متن کامل

Evaluation of Fracture Parameters by Coupling the Edge-Based Smoothed Finite Element Method and the Scaled Boundary Finite Element Method

This paper presents a technique to evaluate the fracture parameters by combining the edge based smoothed finite element method (ESFEM) and the scaled boundary finite element method (SBFEM). A semi-analytical solution is sought in the region close to the vicinity of the crack tip using the SBFEM, whilst, the ESFEM is used for the rest of the domain. As both methods satisfy the partition of unity...

متن کامل

Meshless Methods and Partition of Unity Finite Elements

In this paper, meshless methods and partition of unity based finite element methods are reviewed. In meshless methods, the approximation is built without the explicit connectivity information between the nodes; moving-least squares approximants and natural neighbor-based interpolants are discussed. The enrichment of the finite element approximation through the partition of unity framework is de...

متن کامل

استفاده از دستگاه مختصات متعامد محلی در مدل کردن ترک دو بعدی به روش المان محدود توسعه یافته

The extended finite element method (X-FEM) is a numerical method for modeling discontinuties, such as cracks, within the standard finite element framework. In X-FEM, special functions are added to the finite element approximation. For crack modeling in linear elasticity, appropriate functions are used for modeling discontinuties along the crack length and simulating the singularity in the crack...

متن کامل

An enriched finite element model with q-refinement for radiative boundary layers in glass cooling

Radiative cooling in glass manufacturing is simulated using the partition of unity finite element method. The governing equations consist of a semi-linear transient heat equation for the temperature field and a stationary simplified P1 approximation for the radiation in non-grey semitransparent media. To integrate the coupled equations in time we consider a linearly implicit scheme in the finit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007